亚洲丝袜诱惑一区二区三区|中文字幕网精品一区二区不卡|天天免费看高清在线视频不卡|人妇乱系列中文字幕人妻

聯(lián)系電話 4008121766

當前位置:首頁  >  技術(shù)文章  >  機器學(xué)習(xí)與連續(xù)流連載系列丨機器學(xué)習(xí):人工智能的驅(qū)動力

機器學(xué)習(xí)與連續(xù)流連載系列丨機器學(xué)習(xí):人工智能的驅(qū)動力

更新時間:2024-07-04      點擊次數(shù):551

機器學(xué)習(xí)與連續(xù)流連載系列丨機器學(xué)習(xí):人工智能的驅(qū)動力

摘要

 

 

前期回顧:

 

機器學(xué)習(xí)與連續(xù)流連載系列丨使用康寧反應(yīng)器集成在線光譜,通過半監(jiān)督機器學(xué)習(xí)識別化學(xué)反應(yīng)式計量和動力學(xué)模型機器學(xué)習(xí)與連續(xù)流連載系列丨機器學(xué)習(xí):人工智能的驅(qū)動力點擊進入原文查看

 

本期亮點

本期將對機器學(xué)習(xí)做一次全面感性認識:

  • 什么是機器學(xué)習(xí)?

  • 機器學(xué)習(xí)的工作流程是怎樣的?

  • 機器學(xué)習(xí)有幾種類型?

  • 機器學(xué)習(xí)也有局限性?

機器學(xué)習(xí)(Machine Learning, ML)作為人工智能(Artificial Intelligence, AI)的一個分支,正在逐漸改變我們與技術(shù)的互動方式。本文將探討機器學(xué)習(xí)的核心概念、工作流程、類型、優(yōu)勢與局限。

點擊關(guān)注公眾號,我們下期不見不散!


機器學(xué)習(xí)與連續(xù)流連載系列丨機器學(xué)習(xí):人工智能的驅(qū)動力

 

在回答機器學(xué)習(xí)前,先回到人類的學(xué)習(xí),什么叫做學(xué)習(xí)或者學(xué)會了?簡而言之就是發(fā)現(xiàn)規(guī)律,能根據(jù)已有情況,尋找規(guī)律,解決新問題。

“過擬合”,打個比方就像某學(xué)生做大量題,他死記硬背,只會做已經(jīng)做過的相同的題,遇到相同知識基礎(chǔ)的新題(稍微變化一下)就不會解答,也就是“泛化能力”差。

比如某某學(xué)生在模擬考試中,考試成績好,到了正式考試時,成績不理想,很多家長認為沒有考試運。當然這個有很多原因,比如考試時緊張,身體出現(xiàn)不適等,但有個原因就是其“泛化能力”差,模擬考是他做過的題,沒有從中“泛化”出規(guī)律去解答新題。

機器學(xué)習(xí)類似人類學(xué)習(xí),根據(jù)大量題型總結(jié)規(guī)律,根據(jù)規(guī)律去解決新問題。

人工智能先驅(qū)Arthur Samuel,在1950年代將“機器學(xué)習(xí)”定義為,“使計算機能夠在沒有明確編程的情況下進行學(xué)習(xí)的研究領(lǐng)域”。

Nvidia認為“機器學(xué)習(xí)最基本的是使用算法解析數(shù)據(jù),從中學(xué)習(xí),然后對世界上的事物做出決定或預(yù)測。”

 

機器學(xué)習(xí)與連續(xù)流連載系列丨機器學(xué)習(xí):人工智能的驅(qū)動力

傳統(tǒng)編程

 

機器學(xué)習(xí)與連續(xù)流連載系列丨機器學(xué)習(xí):人工智能的驅(qū)動力

機器學(xué)習(xí)

傳統(tǒng)編程需要寫好嚴格的詳細的程序指令,根據(jù)輸入數(shù)據(jù)得到輸出結(jié)果。其難度在于程序的編寫,有時不能覆蓋某些新情況。比如做饅頭,寫好買1kg白面粉,和面加入X kg水,捏好形狀,放入蒸籠蒸X分鐘。如果遇到了玉米粉,它就不會做玉米饅頭了。

機器學(xué)習(xí)是通過算法和大量的做饅頭的書籍介紹等,總結(jié)出通用規(guī)律,這樣遇到玉米粉也能輸出相應(yīng)做玉米饅頭的步驟。所以機器學(xué)習(xí)難在解析數(shù)據(jù)結(jié)構(gòu),發(fā)現(xiàn)規(guī)律。

 

機器學(xué)習(xí)與連續(xù)流連載系列丨機器學(xué)習(xí):人工智能的驅(qū)動力

機器學(xué)習(xí)的工作流程包括以下幾個關(guān)鍵步驟:

機器學(xué)習(xí)與連續(xù)流連載系列丨機器學(xué)習(xí):人工智能的驅(qū)動力

機器學(xué)習(xí)模型主要分為四種類型:

監(jiān)督學(xué)習(xí):使用帶有明確描述或標簽的訓(xùn)練數(shù)據(jù),算法在“監(jiān)督者”的幫助下學(xué)習(xí)。監(jiān)督學(xué)習(xí)就像做題,有答案和目標可以參照。

無監(jiān)督學(xué)習(xí):使用未標記的訓(xùn)練數(shù)據(jù),目的是在沒有具體指導(dǎo)的情況下發(fā)現(xiàn)數(shù)據(jù)中的模式、結(jié)構(gòu)或關(guān)系。

半監(jiān)督學(xué)習(xí):嚴格意義上來說不算獨立分類,顧名思義就是有一部分有明確描述的數(shù)據(jù)來訓(xùn)練。例如上篇文章提到的半監(jiān)督學(xué)習(xí)。就是先做一部分給答案的題,然后根據(jù)規(guī)律去做另一半沒有答案的題目。

強化學(xué)習(xí):計算機程序通過與環(huán)境的交互來學(xué)習(xí),通過試錯來確定在特定情境下的最佳行動。

機器學(xué)習(xí)與連續(xù)流連載系列丨機器學(xué)習(xí):人工智能的驅(qū)動力

優(yōu)勢

 

  • 數(shù)據(jù)處理能力:機器學(xué)習(xí)能夠處理大量數(shù)據(jù),并自行發(fā)現(xiàn)模式和進行預(yù)測。

  • 靈活性:機器學(xué)習(xí)模型可以適應(yīng)新數(shù)據(jù),并隨著時間的推移不斷提高準確性。

  • 自動化:機器學(xué)習(xí)模型消除了手動數(shù)據(jù)分析和解釋的需要,實現(xiàn)了決策自動化。

局限

  •  過擬合和泛化問題:機器學(xué)習(xí)模型可能過于適應(yīng)訓(xùn)練數(shù)據(jù),導(dǎo)致無法泛化到未見過的例子。

  • 可解釋性:一些機器學(xué)習(xí)模型像“黑箱”一樣運作,即使是專家也無法解釋它們的決策或預(yù)測。

  • 算法偏差:由于訓(xùn)練數(shù)據(jù)可能包含人類的偏見,這可能導(dǎo)致算法偏差,產(chǎn)生不公平的結(jié)果。